55 research outputs found

    The Key Authority - Secure Key Management in Hierarchical Public Key Infrastructures

    Full text link
    We model a private key`s life cycle as a finite state machine. The states are the key`s phases of life and the transition functions describe tasks to be done with the key. Based on this we define and describe the key authority, a trust center module, which potentiates the easy enforcement of secure management of private keys in hierarchical public key infrastructures. This is done by assembling all trust center tasks concerning the crucial handling of private keys within one centralized module. As this module resides under full control of the trust center`s carrier it can easily be protected by well-known organizational and technical measures.Comment: 5 pages, 2 figure

    Outflanking and securely using the PIN/TAN-System

    Full text link
    The PIN/TAN-system is an authentication and authorization scheme used in e-business. Like other similar schemes it is successfully attacked by criminals. After shortly classifying the various kinds of attacks we accomplish malicious code attacks on real World Wide Web transaction systems. In doing so we find that it is really easy to outflank these systems. This is even supported by the users' behavior. We give a few simple behavior rules to improve this situation. But their impact is limited. Also the providers support the attacks by having implementation flaws in their installations. Finally we show that the PIN/TAN-system is not suitable for usage in highly secure applications.Comment: 7 pages; 2 figures; IEEE style; final versio

    An Evaluated Certification Services System for the German National Root CA - Legally Binding and Trustworthy Transactions in E-Business and E-Government

    Full text link
    National Root CAs enable legally binding E-Business and E-Government transactions. This is a report about the development, the evaluation and the certification of the new certification services system for the German National Root CA. We illustrate why a new certification services system was necessary, and which requirements to the new system existed. Then we derive the tasks to be done from the mentioned requirements. After that we introduce the initial situation at the beginning of the project. We report about the very process and talk about some unfamiliar situations, special approaches and remarkable experiences. Finally we present the ready IT system and its impact to E-Business and E-Government.Comment: 6 pages; 1 figure; IEEE style; final versio

    Intrinsically Legal-For-Trade Objects by Digital Signatures

    Full text link
    The established techniques for legal-for-trade registration of weight values meet the legal requirements, but in praxis they show serious disadvantages. We report on the first implementation of intrinsically legal-for-trade objects, namely weight values signed by the scale, that is accepted by the approval authority. The strict requirements from both the approval- and the verification-authority as well as the limitations due to the hardware of the scale were a special challenge. The presented solution fulfills all legal requirements and eliminates the existing practical disadvantages.Comment: 4 pages, 0 figure

    In-packet Bloom filters: Design and networking applications

    Full text link
    The Bloom filter (BF) is a well-known space-efficient data structure that answers set membership queries with some probability of false positives. In an attempt to solve many of the limitations of current inter-networking architectures, some recent proposals rely on including small BFs in packet headers for routing, security, accountability or other purposes that move application states into the packets themselves. In this paper, we consider the design of such in-packet Bloom filters (iBF). Our main contributions are exploring the design space and the evaluation of a series of extensions (1) to increase the practicality and performance of iBFs, (2) to enable false-negative-free element deletion, and (3) to provide security enhancements. In addition to the theoretical estimates, extensive simulations of the multiple design parameters and implementation alternatives validate the usefulness of the extensions, providing for enhanced and novel iBF networking applications.Comment: 15 pages, 11 figures, preprint submitted to Elsevier COMNET Journa

    The 2011 submarine volcanic eruption in El Hierro (Canary Islands)

    Get PDF
    Forty years after the Teneguía Volcano (La Palma, 1971), a submarine eruption took place off the town of La Restinga, south of El Hierro, the smallest and youngest island of the Canarian Archipelago. Precursors allowed an early detection of the event and its approximate location, suggesting it was submarine. Uncertainties derived from insufficient scientific information available to the authorities during the eruption, leading to disproportionate civil protection measures, which had an impact on the island's economy-based primarily on tourism-while residents experienced extra fear and distress. © 2012 Blackwell Publishing Ltd, The Geologists' Association & The Geological Society of London.Peer Reviewe

    The ongoing volcanic eruption of El Hierro, Canary Islands

    Get PDF
    El Hierro, the youngest of the Canary Islands (Spain), is no stranger to hazards associated with volcanic activity or to efforts to minimize the effects of these hazards on local communities. As early as 1793, administrative records of El Hierro indicate that a swarm of earthquakes was felt by locals; fearing a greater volcanic catastrophe, the first evacuation plan of an entire island in the history of the Canaries was prepared. The 1793 eruption was probably submarine with no appreciable consequences other than that the earthquakes were felt [Carracedo, 2008]; over the next roughly 215 years the island was seismically quiet. Yet seismic and volcanic activity are expected on this youngest Canary Island due to its being directly above the presumed location of the Canary Island hot spot, a mantle plume that feeds upwelling magma just under the surface, similar to the Hawaiian Islands. Because of this known geologic activity, the Spanish Instituto Geogrfco Nacional (IGN) has managed geophysical monitoring of the island since the beginning of the 1990s.Peer Reviewe

    The 2011 submarine volcanic eruption in El Hierro (Canary Islands)

    Get PDF
    Forty years after the Teneguía Volcano (La Palma, 1971), a submarine eruption took place off the town of La Restinga, south of El Hierro, the smallest and youngest island of the Canarian Archipelago. Precursors allowed an early detection of the event and its approximate location, suggesting it was submarine. Uncertainties derived from insufficient scientific information available to the authorities during the eruption, leading to disproportionate civil protection measures, which had an impact on the island's economy-based primarily on tourism-while residents experienced extra fear and distress. © 2012 Blackwell Publishing Ltd, The Geologists' Association & The Geological Society of London.Peer Reviewe

    Floating stones off El Hierro, Canary Islands: xenoliths of pre-island sedimentary origin in the early products of the October 2011 eruption

    Get PDF
    The eruption that started off the south coast of El Hierro, Canary Islands, in October 2011 has emitted intriguing eruption products found floating in the sea. These specimens appeared as floating volcanic "bombs" that have in the meantime been termed "restingolites" (after the close-by village of La Restinga) and exhibit cores of white and porous pumice-like material. Currently the nature and origin of these "floating stones" is vigorously debated among researchers, with important implications for the interpretation of the hazard potential of the ongoing eruption. The "restingolites" have been proposed to be either (i) juvenile high-silica magma (e.g. rhyolite), (ii) remelted magmatic material (trachyte), (iii) altered volcanic rock, or (iv) reheated hyaloclastites or zeolite from the submarine slopes of El Hierro. Here, we provide evidence that supports yet a different conclusion. We have collected and analysed the structure and composition of samples and compared the results to previous work on similar rocks found in the archipelago. Based on their high silica content, the lack of igneous trace element signatures, and the presence of remnant quartz crystals, jasper fragments and carbonate relicts, we conclude that "restingolites" are in fact xenoliths from pre-island sedimentary rocks that were picked up and heated by the ascending magma causing them to partially melt and vesiculate. They hence represent messengers from depth that help us to understand the interaction between ascending magma and crustal lithologies in the Canary Islands as well as in similar Atlantic islands that rest on sediment/covered ocean crust (e.g. Cape Verdes, Azores). The occurrence of these "restingolites" does therefore not indicate the presence of an explosive high-silica magma that is involved in the ongoing eruption

    La erupción submarina de La Restinga en la isla de El Hierro, Canarias: Octubre 2011-Marzo 2012

    Get PDF
    The first signs of renewed volcanic activity at El Hierro began in July 2011 with the occurrence of abundant, low-magnitude earthquakes. The increasing seismicity culminated on October 10, 2011, with the onset of a submarine eruption about 2 km offshore from La Restinga, the southernmost village on El Hierro. The analysis of seismic and deformation records prior to, and throughout, the eruption allowed the reconstruction of its main phases: 1) ascent of magma and migration of hypocentres from beneath the northern coast (El Golfo) towards the south rift zone, close to La Restinga, probably marking the hydraulic fracturing and the opening of the eruptive conduit; and 2) onset and development of a volcanic eruption indicated by sustained and prolonged harmonic tremor whose intensity varied with time. The features monitored during the eruption include location, depth and morphological evolution of the eruptive source and emission of floating volcanic bombs. These bombs initially showed white, vesiculated cores (originated by partial melting of underlying pre-volcanic sediments upon which the island of El Hierro was constructed) and black basanite rims, and later exclusively hollow basanitic lava balloons. The eruptive products have been matched with a fissural submarine eruption without ever having attained surtseyan explosiveness. The eruption has been active for about five months and ended in March 2012, thus becoming the second longest reported historical eruption in the Canary Islands after the Timanfaya eruption in Lanzarote (1730-1736). This eruption provided the first opportunity in 40 years to manage a volcanic crisis in the Canary Islands and to assess the interpretations and decisions taken, thereby gaining experience for improved management of future volcanic activity. Seismicity and deformation during the eruption were recorded and analysed by the Instituto Geográfico Nacional (IGN). Unfortunately, a lack of systematic sampling of erupted pyroclasts and lavas, as well as the sporadic monitoring of the depth and growth of the submarine vent by deployment of a research vessel, hampered a comprehensive assessment of hazards posed during volcanic activity. Thus, available scientific data and advice were not as high quality as they could have been, thereby limiting the authorities in making the proper decisions at crucial points during the crisis. The response in 2011-12 to the El Hierro eruption has demonstrated that adequate infrastructure and technical means exist in the Canary Islands for the early detection of potential eruptive hazards. However, it also has taught us that having detailed emergency management plans may be of limited value without an accompanying continuous, well-integrated scientific monitoring effort (open to national and international collaboration) during all stages of an eruption.Los primeros indicios de una posible erupción volcánica en El Hierro se percibieron a partir de julio de 2011 en forma de sismos de baja intensidad pero anormalmente numerosos. La intensificación de la sismicidad culminó con el inicio de la erupción submarina el 10 de octubre de 2011 a unos 2 km al sur de La Restinga. La sismicidad y deformación del terreno que precedieron y acompañaron a esta erupción han permitido reconstruir las principales fases de actividad volcánica: 1) generación y ascenso del magma con migración de los hipocentros sísmicos desde el norte, en el Golfo, hasta el rift sur, en La Restinga, marcando la apertura hidráulica del conducto magmático; y 2) inicio y continuidad de la erupción volcánica evidenciada por un tremor armónico continuo de intensidad variable en el tiempo. Las características observadas a lo largo de la erupción, principalmente localización, profundidad y evolución morfológica del foco emisor, así como emisión de materiales volcánicos flotantes, inicialmente con un núcleo blanco poroso (procedentes de la fusión parcial de sedimentos de la capa superior de la corteza oceánica anteriores a la construcción del edificio insular de El Hierro) envuelto por una corteza basanítica y después huecas (lava balloons), se han correspondido con una erupción submarina fisural profunda sin que nunca hayan intervenido mecanismos más explosivos tipo surtseyano. La erupción se mantuvo activa durante unos cinco meses, dándose por finalizada en marzo del 2012, convirtiéndose de este modo en la segunda erupción histórica más longeva de Canarias después de la de Timanfaya (1730-36) en Lanzarote. Esta erupción ha supuesto la primera oportunidad en 40 años de gestionar una crisis volcánica en Canarias y de analizar las observaciones e interpretaciones y las decisiones adoptadas, con objeto de mejorar la gestión de futuras crisis volcánicas. El Instituto Geográfico Nacional (IGN) se encargó de adquirir y analizar la información sísmica y de deformación durante todo el proceso. Sin embargo, no se dispuso inicialmente de un barco oceanográfico que realizara estudios sistemáticos de la profundidad y progresión de la erupción, así como de toma de muestras de los materiales emitidos (piroclastos y lavas), elementos claves para la determinación de la peligrosidad eruptiva. Estas deficiencias en el seguimiento científico del proceso eruptivo dificultaron en algunos momentos la toma de decisiones de protección civil. El análisis de la crisis ha puesto de manifiesto que, aunque se disponga de una infraestructura técnica adecuada para la detección temprana de crisis eruptivas en el archipiélago, de poco valen las medidas administrativas planificadas sin un seguimiento científico continuo e integrador del proceso eruptivo, abierto a la colaboración científica nacional e internacional
    corecore